Biochemical and Biophysical Research Communications, Vol.395, No.1, 51-55, 2010
Cell ATP level of Saccharomyces cerevisiae sensitively responds to culture growth and drug-inflicted variations in membrane integrity and PDR pump activity
Cellular ATP level in Saccharomyces cerevisiae was measured during culture growth of strain US50-18C overproducing all major PDR pumps and its isogenic mutants variously deleted in these pumps. It was found to be inversely proportional to the intensity of cell metabolism during different growth phases and to the activity of PDR pumps, which are thus among major ATP consumers in the cells. The ATP level was increased when membrane integrity was affected by 0.5% butanol, and further increased by compound 23.1, a semisynthetic phenol lipid derivative that acts as inhibitor of Pdr5p and Snq2p pumps. The magnitude of increase in cell ATP caused by inhibition of Pdr5p pump by compound 23.1 and the Pdr5p pump inhibitor FK506 used for comparison reflects the activity and hence the energy demand of the pump. The rise in cell ATP caused by different PDR pump inhibitors can be thus used as an indicator of pump activity and the potency of the inhibitor. Crown Copyright (C) 2010 Published by Elsevier Inc. All rights reserved.