Applied Surface Science, Vol.256, No.17, 5292-5297, 2010
Experimental and simulated propene isotherms on porous solids
The lack of treatment capacity of hydrocarbons by three-way catalysts during the "cold start" period creates an important environmental problem. During this period, the temperature of the three-way catalyst is too low for effective operation and cannot convert the hydrocarbons in the exhaust. 50-80% of the total hydrocarbon emissions are produced in this phase that accomplishes the first 60-120 s of the engine operation. In this study, the technology chosen to treat these emissions is the use of HC-traps, and molecular simulations are tested as a tool to reproduce the experimental adsorption behaviour of porous solids. Therefore, experimental and simulated adsorption isotherms of propene (model hydrocarbon) have been obtained for four different crystalline materials with distinctive framework structures (3D and 1D) and a variety of Si/Al ratios and cations (three zeolites: ZSM-5, BETA and Mordenite; and a silicoaluminophosphate molecular sieve: SAPO-5). (C) 2009 Elsevier B.V. All rights reserved.
Keywords:Hydrocarbon emission reduction;Propene trap;Silicoaluminophosphate;Zeolite;Cold start;Molecular simulation