화학공학소재연구정보센터
Applied Surface Science, Vol.256, No.6, 1657-1663, 2010
Preparation and characterization of asymmetric polyethersulfone and thin-film composite polyamide nanofiltration membranes for water softening
In this research, two types of nanofiltration membranes were prepared and evaluated for water softening. Their nanofiltration performance was evaluated by cross-flow filtration using NaCl (1 g/l) and MgSO4 (1 g/l) solution at 5 and 10 bar, 25 degrees C and 10 l/min. The morphological studies were performed with SEM and AFM instruments. In addition, the hydrophilicity of membranes was examined by contact angle measurements. In the first type, asymmetric polyethersulfone (PES) nanofiltration membranes were prepared using phase inversion induced by immersion precipitation technique. Different components such as polyvinylpyrrolidone (PVP), polyethyleneglycole (PEG), acrylic acid and Triton X-100 were used as additive in the PES casting solution, which lead to the formation of new asymmetric nanofiltration membranes. Two concentrations of PES (20 and 25 wt%) and two different non-solvents (pure water and mixture of water (80 vol.%) and IPA (20 vol.%)) were used for preparing asymmetric nanofiltration membranes. The morphological studies showed that the membranes prepared with non-solvent containing 20 vol.% IPA have smoother surface and smaller pores in surface and sub-layer compared to membranes prepared with pure water as non-solvent. The flux was decreased when higher polymer concentration and mixture of water and IPA were employed for membrane formation. However, NaCl and MgSO4 rejections were improved. In the second type, thin-film composite polyamide nanofiltration membrane was fabricated using interfacial polymerization of 1,3-phenylenediamine (PDA) with trimesoyl chloride (TMC). A rough and dense film was formed on the PES support membrane by interfacial polymerization. The water permeability of composite membrane was 7 and 21 kg m(-2) h(-1) at 5 and 10 bar, respectively. Moreover, the rejection to the MgSO4 as divalent salt (85 and 90%) was high compared to the NaCl as monovalent salt (64 and 67%). (C) 2009 Elsevier B.V. All rights reserved.