화학공학소재연구정보센터
Advanced Powder Technology, Vol.21, No.4, 461-467, 2010
Preparation of Fe3O4-chitosan nanoparticles used for hyperthermia
The Fe3O4-chitosan nanoparticles with core-shell structure have been prepared by crosslinking method. Oleic acid modified Fe3O4 nanoparticles were firstly prepared by co-precipitation then chitosan was added to coat on the surface of the Fe3O4 nanoparticles by physical absorption. The Fe3O4-chitosan nanoparticles were obtained by crosslinking the amino groups on the chitosan using glutaraldehyde. Transmission electron microscopy showed that the Fe3O4-chitosan nanoparticles were quasi-spherical with a mean diameter of 10.5 nm. X-ray diffraction pattern and X-ray photoelectron spectra indicated that the magnetic nanoparticles were pure Fe3O4 with a cubic inverse spinel structure. The modification using chitosan did not result in a phase change. The binding of chitosan to the Fe3O4 nanoparticles was also demonstrated by the measurement of fourier transform infrared spectra and thermogravimetric analysis. Magnetic measurement revealed that the saturation magnetization of the composite nanoparticles was 30.7 emu/g and the nanoparticles were superparamagnetic at room temperature. Furthermore, the inductive heating property of the composite nanoparticles in an alternating current magnetic field was investigated and the results indicated that the heating effect was significant. The Fe3O4-chitosan nanoparticles prepared have great potential in hyperthermia. (C) 2010 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.