Advanced Functional Materials, Vol.20, No.16, 2717-2722, 2010
Graphene-Based Nanoporous Materials Assembled by Mediation of Polyoxometalate Nanoparticles
A kind of graphene-based nanoporous material is prepared through assembling graphene sheets mediated through polyoxometalate nanoparticles. Owing to the strong interaction between graphene and polyoxometalate, 2D graphene sheets with honeycomb-latticed carbon atoms could assemble into a porous structure, in which 3D polyoxometalate nanoparticles serve as the crosslinkers. Nitrogen and hydrogen sorption analysis reveal that the as-prepared graphene-based hybrid material possesses a specific surface area of 680 m(2) g(-1) and a hydrogen uptake volume of 0.8-1.3 wt%. Infrared spectrometry is used to probe the electron density changes of polyoxometalate particle in the redox-cycle and to verify the interaction between graphene and polyoxometalate. The as-prepared graphene-based materials are further characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy.