화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.27, No.6, 1854-1859, November, 2010
Hydrogen production from wastewater using a microbial electrolysis cell
E-mail:
A Microbial electrolysis cell (MEC) was designed to produce a useful and valuable product, hydrogen gas, during the wastewater treatment process. Hydrogen can be produced using the MEC with an applied voltage of over 0.4 V, and the hydrogen yields gradually increased with the increasing of applied voltage. A maximum overall hydrogen efficiency of 21.2% was achieved at an applied voltage of 1.0 V with acetate as substrate, corresponding to a volumetric hydrogen production rate of approximately 0.095 m3 H2/m3 reactor liquid volume/day. A volumetric hydrogen production rate of 0.061 m3 H2/m3 reactor liquid volume/day was achieved when piggery wastewater was fed to the MEC, and the chemical oxygen demand removal rate ranged from 45 to 52%. The results demonstrated that the wastewater, especially an organic-rich item such as piggery wastewater, could be feasibly treated based on this MEC system.
  1. Hussy I, Hawkes FR, Dinsdale R, Hawkes DL, Biotechnol. Bioeng., 84(6), 619 (2003)
  2. Miyake J, Miyake M, Asada Y, J. Biotechnol., 70, 89 (1999)
  3. Logan BE, Environ. Sci. Technol., 38, 160A (2004)
  4. Selembo PA, Perez JM, Lloyd WA, Logan BE, Int. J. Hydrog. Energy, 34, 5357 (2009)
  5. Logan BE, Call D, Chen S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA, Environ. Sci. Technol., 42, 8630 (2008)
  6. Liu H, Grot S, Logan BE, Environ. Sci. Technol., 39, 4317 (2005)
  7. Li CH, Fang HHP, Crit. Rev. Environ. Sci. Technol., 37, 1 (2007)
  8. Angenent LA, Karim K, AI-Dahhan MH, Wrenn BA, Domiguez-Espinosa R, Trends Biotechnol., 22, 477 (2004)
  9. Levin DB, Pitt L, Love M, Int. J. Hydrog. Energy, 29, 173 (2004)
  10. Chaudhuri SK, Lovely DR, Nat. Biotechnol., 21, 1229 (2003)
  11. Oh SE, Logan BE, Water Res., 39, 4673 (2005)
  12. Jeong CM, Choi JDR, Ahn Y, Chang HN, Korean J. Chem. Eng., 25(3), 535 (2008)
  13. Trinh NT, Park JH, Kim BW, Korean J. Chem. Eng., 26(3), 748 (2009)
  14. Scholz F, Schroder U, Nat. Biotechnol., 21, 1151 (2003)
  15. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W, Appl. Environ. Microbiol., 70, 5373 (2004)
  16. Rabaey K, Verstraete W, Trends Biotechnol., 23, 291 (2005)
  17. Jia YH, Tran HT, Kim DH, Oh SJ, Park DH, Zhang RH, Ahn DH, Bioprocess. Biosyst. Eng., 31, 315 (2008)
  18. Li ZL, Yao L, Kong LC, Liu H, Bioresour. Technol., 99(6), 1650 (2008)
  19. Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W, Environ. Sci. Technol., 40, 3388 (2006)
  20. Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I, Environ. Sci. Technol., 40, 5191 (2006)
  21. Ditzig J, Liu H, Logan BE, Int. J. Hydrog. Energy, 32, 2296 (2007)
  22. Liu WZ, Wang AJ, Ren NQ, Zhao XY, Liu LH, Yu ZG, Lee DJ, Energy Fuels, 22(1), 159 (2008)
  23. Rozendal RA, Hamelers HVM, Molenkamp RJ, Buisman CJN, Water Res., 41, 1984 (2007)
  24. Cheng S, Logan BE, Proc. Natl. Acad. Sci. U.S.A., 104, 18871 (2007)
  25. Lee J, Phung NT, Chang IS, Kim BH, Sung HC, FEMS Microbiol. Lett., 223, 185 (2003)
  26. Call D, Logan BE, Environ. Sci. Technol., 42, 3401 (2008)
  27. Chae KJ, Choi MJ, Lee JW, Ajayi FF, Kim IS, Int. J. Hydrog. Energy, 33, 5184 (2008)
  28. Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN, Int. J. Hydrog. Energy, 31, 1632 (2006)