화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.48, No.4, 519-533, August, 2010
전해질 수용액에서 L-Alanine의 활동도계수와 용해도의 측정 및 모델링
Measurements and Modeling of the Activity Coefficients and Solubilities of L-alanine in Aqueous Electrolyte Solutions
E-mail:
초록
본 연구에서는 L-형 아미노산인 L-Alanine과 무기염인 NaCl, KCl, NaNO3 및 KNO3의 각 전해질로 이루어진 L-Alanine/전해질 수용액 계에서 L-Alanine의 활동도계수와 용해도를 298.15 K에서 측정하였다. L-Alanine의 활동도계수는 양이온 및 음이온의 선택성 전극으로 이루어진 화학전지에서 두 전극간의 기전력을 측정하는 전기화학 법으로 측정하였으며, 용해도는 L-Alanine의 고체상과 상평형을 이루고 있는 포화용액을 중량 분석하여 측정하였다. 한편 본 연구에서는 아미노산(L-Alanine)/전해질 수용액 계의 잔류(residual) Helmholtz 자유에너지를 섭동사슬-통계역학적 회합성유체이론 (perturbed chain-statistical associating fluid theory)과 단순-평균구근사(primitive-mean spherical approximation)이론을 결합한 관계로 모델링 하였으며, 이로부터 아미노산의 활동도계수 및 용해도에 대한 열역학적 관계식을 얻었다. Helmholtz 자유에너지를 모델링 하는 과정에서는 아미노산은 양쪽성 이온(zwitterion) 형태로 존재하며 아미노산의 양쪽성 이온은 같은 이온끼리 자기-회합(self-association)하며 동시에 물분자와 교차-회합(cross-association)하는 회합체로 가정하였으며, 또한 아미노산의 양쪽성 이온이 전해질(무기염)로부터 해리된 양이온 및 음이온과 상호작용하여 이온복합체(ion complex)를 형성하는 과정을 회합현상으로 가정하였다. 본 연구에서 제안된 이론적 모델로부터 L-Alanine/전해질 수용액 계에서 계산되는 L-Alanine의 활동도계수 및 용해도 값은 본 연구의 실험값과 일치하는 경향을 보였다.
Activity oefficients and solubilities of L-Alanine in aqueous solutions containing each of four electrolytes (NaCl, KCl, NaNO3 and KNO3) were measured at 298.15 K. The measurements of activity coefficients were carried out in the electrochemical cell coupled with two ion-selective electrodes(cation and anion), and the solubilities were measured by the gravimetric analysis of saturated solutions in equilibrium with the solid phase of L-alanine. To model the activity coefficients and solubilities of amino acid in the amino acid/electrolyte aqueous solutions, thermodynamic relations of the residual Helmholtz free energy in the amino acid/electrolyte aqueous solutions were developed based on the perturbed-chain statistical associating fluid theory(PC-SAFT) combined with the primitive mean spherical approximation(primitive-MSA). In the present model, it is assumed that the zwitterions of L-alanine are associated with each other and cross-associated with water molecules, and also cross-associated with the cation and anion dissociated from an electrolyte(inorganic salt). The activity coefficients and solubilities of L-Alanine calculated from the theoretical model proposed in this work are found to be well agreeable with experimental data.
  1. Bell DJ, Hoare M, Dunnill P, Advances in biochemical engineering/biotechnology, 26, 1 (1983)
  2. Subramanian G, Bioseparations and Bioprocessing vol. 1, Wiley-VCH Verlag GmbH & Co., Weinheim (2007)
  3. Kirkwood JG, J. Chem. Phys., 2, 351 (1934)
  4. Kirkwood JG, Chem. Rev., 24, 233 (1939)
  5. Chen CC, Zhu Y, Evans LB, Biotechnol. Prog., 5, 111 (1989)
  6. Chen CC, Britt HI, Boston JF, Evans LB, AIChE J., 28, 588 (1982)
  7. Rodriguezraposo R, Fernandezmerida L, Esteso MA, J. Chem. Thermodyn., 26(10), 1121 (1994)
  8. Fernandezmerida L, Rodriguezraposo R, Garciagarcia GE, Esteso MA, J. Electroanal. Chem., 379(1-2), 63 (1994)
  9. Pitzer KS, “Activity Coefficients in Electrolyte Solutions,” second edition, CRC press, Boca Raton, Florida (1991)
  10. Khoshkbarchi MK, Vera JH, AIChE J., 42(8), 2354 (1996)
  11. Khoshkbarchi MK, Vera JH, J. of Sol. Chem., 25, 865 (1996)
  12. Bromley LA, AIChE J., 19, 313 (1973)
  13. Khoshkbarchi MK, Vera JH, AIChE J., 42(1), 249 (1996)
  14. Pazuki GR, Rohani AA, Dashtizadeh A, Fluid Phase Equilib., 231(2), 171 (2005)
  15. Haghtalab A, Vera JH, AIChE J., 34, 803 (1988)
  16. Pazuki GR, Taghikhani V, Vossoughi M, Fluid Phase Equilib., 255(2), 160 (2007)
  17. Zhao ES, Yu M, Sauve RE, Khoshkbarchi MK, Fluid Phase Equilib., 173(2), 161 (2000)
  18. Sadeghi R, Fluid Phase Equilib., 260(2), 266 (2007)
  19. Sadeghi R, Can. J. Chem., 86, 1126 (2008)
  20. Khoshkbarchi MK, Vera JH, Ind. Eng. Chem. Res., 35(12), 4755 (1996)
  21. Blum L, Hye JS, J. Phys. Chem., 81, 1311 (1977)
  22. Gao CX, Vera JH, Can. J. Chem. Eng., 79(3), 392 (2001)
  23. Chapman WG, Gubbins KE, Jackson G, Radosz M, Ind. Eng. Chem. Res., 29, 1709 (1990)
  24. Huang S, Radosz M, Ind. Eng. Chem. Res., 29, 2284 (1990)
  25. Gross J, Sadowski G, Ind. Eng. Chem. Res., 40(4), 1244 (2001)
  26. Lee BS, Kim KC, Korean J. Chem. Eng., 26(6), 1733 (2009)
  27. Lee BS, Kim KC, Korean J. Chem. Eng., 27(1), 267 (2010)
  28. Israelachvili JN, “Intermolecular and Surface Forces,” second edition, Academic press Inc., San Diego, CA (1991)
  29. Sotocampos AM, Khoshkbarchi MK, Vera JH, J. Chem. Thermodyn., 29(5), 609 (1997)
  30. Soto-Campos AM, Khoshkbarchi MK, Vera JH, Fluid Phase Equilib., 142(1-2), 193 (1998)
  31. Khoshkbarchi MK, Vera JH, Ind. Eng. Chem. Res., 35(8), 2735 (1996)
  32. Chung YM, Vera JH, Fluid Phase Equilib., 203(1-2), 99 (2002)
  33. Khoshkbarchi MK, Vera JH, Ind. Eng. Chem. Res., 36(6), 2445 (1997)
  34. Liu Y, Li ZB, Mi JG, Zhong CL, Ind. Eng. Chem. Res., 47(5), 1695 (2008)
  35. Harris ELV, Angal S, Protein purification methods: A practical approach, Oxford University Press, NY (1989)
  36. Barrett GC, Chemistry and biochemistry of the amino acids, Chapman and Hall, New York (1985)
  37. Badarayani R, Kumar A, Fluid Phase Equilib., 201(2), 321 (2002)
  38. Yuan Q, Li ZF, Wang BH, J. Chem. Thermodyn., 38(1), 20 (2006)
  39. Hamer WJ, Wu YC, J. Phys. Chem. Ref. Data, 1, 1047 (1972)
  40. Green JP, Winitz M, Chemistry of Amino Acids Vol. 1,, John Wiley & Sons, New York (1961)
  41. Khoshkbarchi MK, Vera JH, Ind. Eng. Chem. Res., 35(11), 4319 (1996)
  42. Wolbach JP, Sandler SI, Ind. Eng. Chem. Res., 37(8), 2917 (1998)