화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.48, No.4, 475-482, August, 2010
화상분석을 이용한 소프트 센서의 설계와 산업응용사례 1. 외관 품질의 수치적 추정과 모니터링
Soft Sensor Design Using Image Analysis and its Industrial Applications Part 1. Estimation and Monitoring of Product Appearance
E-mail:
초록
화상분석(image analysis)을 이용하여 제품의 외관(外觀) 품질을 정량적으로 추정할 수 있는 소프트 센서를 설계하고, 이를 제품의 품질 모니터링에 적용하는 연구를 수행하였다. 여기에 사용된 방법론은 크게 다음의 세 단계로 구성되어 있다: (1) 웨이블릿 변환(wavelet transform)을 이용한 화상으로부터의 질감(texture) 특징 추출, (2) 추출된 질감특징의 부공간 투영(projection on subspace)을 통한 제품 외관의 추정, 그리고 (3) 질감특징의 잠재변수(latent variables) 즉, 외관의 수치적 추정치를 목적에 맞게 사용. 이 방법에서는 제품의 외관을 서로 다른 불연속적인 부류로의 분류 보다는, 연속적인 외관 변화를 일관적이고 정량적으로 추정하는데 초점을 두고자 한다. 이 방법은 인조대리석 외관의 수치적 추정과 품질 모니터링 적용사례를 통해 설명되었다.
In this work, soft sensor based on image anlaysis is proposed for quantitatively estimating the visual appearance of manufactured products and is applied to quality monitoring. The methodology consists of three steps; (1) textural feature extraction from product images using wavelet transform, (2) numerical estimation of the product appearance through projection of the textural features on subspace, and (3) use of latent variables of textural features (i.e., numerical estimates of product appearance). The focus of this approach is on the consistent and quantitative estimation of continuous variations in visual appearance rather than on classification into discrete classes. This approach is illustrated through the application to the estimation and monitoring of the appearance of engineered stone countertops.
  1. Davies ER, Machine Vision: Theory, Algorithms, Practicalities, (2nd Ed.), Academic Press San Diego (1997)
  2. Marshall AD, Martin RR, Computer Vision, Models and Inspection, World Scientific Publishing, Singapore (1992)
  3. Bharati M, Liu JJ, MacGregor JF, Chemometrics and Intelligent Laboratory Systems, 72, 57 (2004)
  4. Liu J, MacGregor JF, Duchesne C, Bartolacci G, Minerals Engineering, 18, 65 (2005)
  5. Lee KB, Park BS, Chae JS, Ryu SK, HWAHAK KONGHAK, 33(3), 393 (1995)
  6. HONG CS, LEE CS, Korean J. Chem. Eng., 4(1), 73 (1987)
  7. Hotelling H, J. Educ. Psychol., 24, 417 (1933)
  8. Yu HL, MacGregor JF, Haarsma G, Bourg W, Ind. Eng. Chem. Res., 42(13), 3036 (2003)
  9. Yu HL, MacGregor JF, AIChE J., 50(7), 1474 (2004)
  10. Tuceryan M, Jain AK, “Texture Analysis,” [ed.] Chen CH, Handbook of Pattern Recognition and Computer Vision, 2nd ed., Chapter 21, World Scientific Publishing Co, New Jersey (1998)
  11. Vetterli M, Kovacevic J, Prentice Hall, Englewood Cliffs (1995)
  12. Randen T, Filter and Filter Bank Design for Image Texture Recognition. Ph.D Thesis, NTNU, Norway (1997)
  13. Daubechies I, Ten Lectures on Wavelets. SIAM, CBMS-NSF Reg. Conf. Series in Applied Math. no. 61., Philadelphia (1992)
  14. Bell AJ, Sejnoski TJ, Neural Computation, 7, 1129 (1995)
  15. Lee JM, Yoo CK, Lee IB, J. Process Control, 14(5), 467 (2004)
  16. Kourti T, MacGregor JF, J. Qual. Technol., 28, 409 (1996)
  17. Chang T, Kuo C, IEEE Transactions on Image Processing, 2, 429 (1993)
  18. Liu JJ, MacGregor FJ, Miner. Eng., 21, 642 (2008)