화학공학소재연구정보센터
Rheologica Acta, Vol.47, No.4, 459-468, 2008
A phenomenological modification of rheological models for concentrated two-phase systems: application to a thermoplastic/thermoset blend
This paper considers an improvement of the emulsion models to take into account concentrated emulsions with no coalescence but with significant interaction between particles. For this purpose, a term proportional to the volume fraction of material in excess to the percolation threshold is added to the dynamic modulus. Its usefulness was tested to model the viscoelastic behavior in oscillatory shear flow of concentrated and diluted blends of a thermoplastic polystyrene with an epoxy-amine thermoset. These blends experience phase separation upon polymerization and the volume fraction of separated phase varies continuously with time. At low volume fraction of dispersed phase, the behavior could be described with a simple emulsion model that takes into account the plastisizing, dilution, and phase separation mechanisms. However, for concentration in excess to the percolation threshold, the modification can cope with a larger increase in the modulus related to the mechanical percolation of the dispersed particles.