Reaction Kinetics and Catalysis Letters, Vol.97, No.2, 363-370, 2009
Reinforced nickel catalysts for steam reforming of methane to synthesis gas
XRD, mercury porosimetry, low-temperature nitrogen adsorption and electron microscopy were used to study peculiarities of the formation of reinforced composite nickel catalysts. The catalysts were prepared by sintering powdered metallic nickel with a supported nickel catalyst (GIAP-3 or NIAP-18) applied to a reinforcing stainless steel gauze. It was found that a metal matrix, in the pores of which supported catalyst particles were distributed, was formed in the composite catalysts. The NIAP-18-based catalyst exceeded the GIAP-3-based catalyst in activity toward the methane steam reforming. The NIAP-18-based catalyst was as active as the Cr2O3-doped NIAP-18-based catalyst, but showed a worse coke-resistance. A chromium oxide additive increased the activity of the GIAP-3-based catalyst.