화학공학소재연구정보센터
Polymer Engineering and Science, Vol.48, No.7, 1345-1350, 2008
Temperature dependence of electrical resistivity in carbon nanofiber/unsaturated polyester nanocomposites
This article described the temperature dependence of electrical resistivity for carbon nanofiber (CNF)/unsaturated polyester resin (UPR) nanocomposites prepared by a solvent evaporation method. It was found that the CNF/UPR nanocomposites had quite low electrical percolation threshold due to CNFs having a large aspect ratio and being well dispersed into the UPR matrix. A sharp decrease in the electrical resistivity was observed at about 1 wt% CNF content. The influence of CNF content on the electrical resistivity was investigated as a function of temperature in detail. The nanocomposites showed a positive temperature coefficient effect for the resistivity, and had a strong temperature dependence near the percolation threshold. When the number of thermal cycles was increased, the electrical resistivity decreased and had a weak temperature dependence, especially in the case of melting temperature. Moreover, the size influences of CNFs on the electrical properties of nanocomposites were analyzed and discussed.