Polymer Engineering and Science, Vol.48, No.6, 1191-1198, 2008
Rheological properties, flow visualization and extrudate swell of NR compound by rotating-die rheometer
An experimental apparatus coupled with a rotating die system was especially designed and manufactured to study the rheological properties, flow patterns and swelling behavior of natural rubber (NR) compound for different shear rates and die rotating speeds at a test temperature of 110 degrees C, the results being compared with those by the static capillary die. It was found that NR compound used exhibited psuedoplastic non-Newtonian behavior. The rotation of the capillary die could reduce the extrusion load. The wall shear stress for any given shear rates increased with increasing die rotating speed. The fluctuation of the entrance pressure drop increased with increasing die rotating speed. The flow pattern development in the rotating-die rheometer was different from that observed in the static die. The flow patterns in the rotating die were clearly unstable and contained two flow components which included axial flow along the barrel and circumferential flow at the die entrance. The size and shape of the axial and circumferential flows were more dependent on the piston displacement. It was found that the swelling ratio of the NR compound decreased with increasing die rotating speed.