화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.16, No.4, 640-645, July, 2010
Effect of surface area parameters on the vapor-liquid equilibrium calculations using a lattice fluid equation of state with hydrogen bonding
E-mail:
Vapor-liquid equilibrium calculations at ambient and elevated pressures were performed using the lattice fluid equation of state with hydrogen bonding (NLF-HB EoS) proposed by You et al. [7,8] and Lee et al. [17]. Vapor-liquid equilibrium calculations composed of typical pure components were compared with electronic experimental database (Dortmund Data Bank). Special attention has been paid to the correction of surface area parameters. Bulkiness factors can be used to modify theoretical surface area parameters for molecules with nonlinear shapes. Empirical bulkiness factors were obtained from liquid density data and VLE data sets with n-hexane chosen as a reference component. Using empirical bulkiness factors, overall prediction performances without binary interaction parameters have been significantly improved. It is shown that the NLF-HB EoS have comparable prediction capability with UNIQUAC method or Peng-Robinson Equation of State only with pure component parameters and component-type-dependent hydrogen-bonding energy parameters for most systems considered in this study.
  1. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59 (1976)
  2. Wong DSH, Sandler SI, AIChE J., 38, 671 (1992)
  3. Wong DSH, Sandler SI, Ind. Eng. Chem. Res., 31, 2033 (1992)
  4. Chapman WG, Gubbins KE, Jackson G, Radosz M, Ind. Eng. Chem. Res., 29, 1709 (1990)
  5. Huang SH, Radosz M, Ind. Eng. Chem. Res., 29, 2284 (1990)
  6. Huang SH, Radosz M, Ind. Eng. Chem. Res., 30, 1994 (1991)
  7. You SS, Yoo KP, Lee CS, Fluid Phase Equilib., 93, 193 (1993)
  8. You SS, Yoo KP, Lee CS, Fluid Phase Equilib., 93, 215 (1993)
  9. Yeom MS, Yoo KP, Park BH, Lee CS, Fluid Phase Equilib., 143, 158 (1999)
  10. Kang JW, Lee JH, Yoo KP, Lee CS, Fluid Phase Equilib., 194, 77 (2002)
  11. Lee SH, Hasch BM, McHugh MA, Fluid Phase Equilib., 117(1-2), 61 (1996)
  12. Albrecht KL, Stein FP, Han SJ, Gregg CJ, Radosz M, Fluid Phase Equilib., 117(1-2), 84 (1996)
  13. Yarrison M, Chapman WG, Fluid Phase Equilib., 226, 195 (2004)
  14. Guggenheim EA, Mixtures, Clarendon Press, Oxford (1952)
  15. Veytsman BA, J. Phys. Chem., 94, 8499 (1990)
  16. Panayiotou CG, Sanchez IC, J. Phys. Chem., 95, 10090 (1991)
  17. Lee CS, Yoo KP, Park BH, Kang JW, Fluid Phase Equilib., 187, 433 (2001)
  18. Gmehling J, Fluid Phase Equilib., 107(1), 1 (1995)
  19. Baker JA, Aust. J. Chem., 6, 207 (1953)
  20. Kang JW, Yoo KP, Kim HY, Lee H, Yang DR, Lee CS, J. Int. Thermophys., 22, 487 (2001)
  21. Bondi A, Physical Properties of Molecular Crystals, Liquids and Gases, John Wiley and Sons, New York (1967)
  22. Kehiaian HV, Grolier JPE, Benson GC, J. Chim. Phys., 75, 1031 (1978)
  23. Abrams DS, Prausnitz JM, AIChE J., 21, 116 (1975)
  24. Sanchez IC, Lacombe RH, J. Phys. Chem., 80, 2352 (1976)
  25. Sanchez IC, Lacombe RH, J. Phys. Chem., 80, 2568 (1976)
  26. Panyiotou C, Vear JH, Can. J. Chem. Eng., 59, 501 (1981)
  27. Lee BC, Danner RP, AIChE J., 42(11), 3223 (1996)
  28. Danner RP, Hamedi M, Lee BC, Fluid Phase Equilib., 194, 619 (2002)