화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.16, No.4, 620-628, July, 2010
Efficient constraint handling scheme for differential evolutionary algorithm in solving chemical engineering optimization problem
E-mail:
This paper introduces a new constraint handling scheme developed for the differential evolutionary algorithm to solve constrained optimization problems. The developed approach uses a repair algorithm based on the gradient information derived from the equality constraint set to correct infeasible solutions. A dominance-based selection scheme is also applied to incorporate constraints into the objective function. To illustrate the developed algorithm and to compare its efficiency with other tradition method, several test problems and chemical engineering optimization problems are used. A traditional constraint handling technique is compared; both in terms of solution quality and the number of function evaluations required. The performance of our developed scheme compares favorably with traditional penalty function method. Our developed algorithm can effectively handle constraints encountered in chemical engineering optimization problems.
  1. Ba¨ck T, Fogel D, Michalewicz Z, Handbook of Evolutionary Computation, Institute of Physics Publishing and Oxford University Press, New York (1997)
  2. Storn R, Price K, J. Global Optim., 11, 341 (1997)
  3. Coello C, Comput. Method Appl. Mech. Eng., 11, 1245 (2002)
  4. Michalewicz Z, Shoenauer M, Evol. Comput., 4, 1 (1996)
  5. Fiacco A, McCormick G, Manage. Sci., 12, 816 (1968)
  6. Joines J, Houck C, First IEEE International Conference on Evolutionary Computation, 579 (1994)
  7. Kazarlis S, Petridis V, 5th International Conference on Parallel Problem Solving from Nature, Berlin, 211 (1998)
  8. Dadios E, J. Ashraf, Clean Technol. Environ. Policy., 8, 85 (2006)
  9. Michalewicz Z, Attia N, 3rd Annual Conference on Evolutionary Programming, 98 (1994)
  10. Eiben A, Hauw JVD, Hemert JV, J. Heuristics., 4, 25 (1998)
  11. Bean J, ORSA J. Comput., 6, 154 (1994)
  12. Dasgupta D, Michalewicz Z, Evolutionary Algorithms in Engineering Applications, Springer-Verlag, Germany (1997)
  13. Liepins G, Vose M, J. Exp. Theor. Comput. Sci., 2, 4 (1990)
  14. Riche RL, Haftka R, Compos. Eng., 3, 121 (1994)
  15. Tate D, Smith A, Comput. Oper. Res., 22, 73 (1995)
  16. Chootinan P, Chen A, Comput. Oper. Res., 33, 2263 (2006)
  17. Surry P, Radcliffe N, Boyd I, Control Cybern., 26, 391 (1997)
  18. Coello C, Montes E, Adv. Eng. Inform., 16, 193 (2002)
  19. Preechakul C, Kheawhom S, J. Ind. Eng. Chem., 15(1), 110 (2009)
  20. Price K, An Introduction to DE, McGraw-Hill, London, UK (1999)
  21. Fan H, Lampinen J, J. Global Optim., 27, 105 (2003)
  22. Ba¨ ck T, Fogel D, Michalewicz Z, Evolutionary Computation 2: Advanced Algorithms and Operators, 1st ed., Taylor & Francis, New York, USA (2000)
  23. Deb K, Comput. Method Appl. Mech. Eng., 186, 311 (2000)
  24. Montes E, Coello C, IEEE Trans. Evol. Comput., 9, 1 (2005)
  25. Luo YQ, Yuan XG, Liu YJ, Comput. Chem. Eng., 31(3), 153 (2007)
  26. Koziel S, Michalewicz Z, Evol. Comput., 7, 19 (1999)
  27. Diwekar U, Grossmann I, Rubin E, Ind. Eng. Chem. Res., 31, 313 (1992)
  28. Diwekar U, Rubin E, Ind. Eng. Chem. Res., 32, 2006 (1993)
  29. Angira R, Abu BV, Chem. Eng. Sci., 61(14), 4707 (2006)
  30. Summanwar VS, Jayaraman VK, Kulkarni BD, Kusumakar HS, Gupta K, Rajesh J, Comput. Chem. Eng., 26(10), 1481 (2002)
  31. Kocis G, Grossmann I, Ind. Eng. Chem. Res., 26, 1869 (1987)
  32. Adjiman CS, Androulakis IP, Floudas CA, Comput. Chem. Eng., 22(9), 1159 (1998)
  33. Babu BV, Angira R, Comput. Chem. Eng., 30(6-7), 989 (2006)
  34. Floudas C, Pardalos P, A Collection of Test Problems for Constrained Global Optimization Algorithms, Springer, Berlin, Germany (1990)