Applied Chemistry for Engineering, Vol.21, No.4, 452-456, August, 2010
1,3-디글리세리드의 선택적 합성에 있어서 상용 고정화 효소의 영향에 관한 비교 연구
A Comparative Study on the Effect of Commercialized Immobilized Lipases on the Selective Synthesis of 1,3-Diglyceride
E-mail:
초록
최근 1,3-디글리세리드(1,3-DG)는 트리글리세리드(TG)와 대사 기구가 달라, 체지방으로 체내에 축적되지 않는 것으로 알려져 주목을 받고 있다. 본 논문에서는 고정화 리파제인 Lipozyme을 사용한 1,3-DG의 선택적 합성에 관하여 연구하였다. 글리세린과 올레인산(OA)의 몰비를 1 : 2로 고정한 후에 진공 하에서 수행한 에스테르 합성 반응에서 있어서, 반응 온도 및 리파제의 양에 따른 모노글리세리드(MG), DG, TG 및 DG 중의 1,3-DG의 함량 변화를 분석하였다. 온도가 높아질수록 또한 리파제의 사용량이 늘어날수록 OA의 감소 속도로 측정한 반응 속도는 빨랐으며, DG 함량이 최대치에 도달한 이후에는 MG, DG 및 TG의 함량에는 많은 변화가 발생하는 것을 확인할 수 있었다. Novozym을 사용하여 동일한 실험을 한 기존의 결과와 비교하였을 때, 반응성은 Novozym 쪽이 높았으나, 1,3-DG의 선택성은 Lipozyme이 월등하게 높아서, 50 ℃ 반응에서 DG 중의 1,3-DG 함량이 98%에 달했다.
It is known that 1,3-diglyceride (1,3-DG) hardly accumulates inside human body because the metabolism of 1,3-DG is entirely different from that of general fats such as triglycerides (TG). This research focuses on the selective synthesis of 1,3-DG by the esterification reaction using an immobilized lipase. For a reaction between glycerin and oleic acid (OA) with a mole ratio of 1 : 2 under vacuum, changes in the compositions of monoglyceride (MG), TG and DG and the contents of 1,3-isomers in DG were investigated, as a function of reaction temperature and the amount of lipase. The reactivities determined by the rate of the consumption of OA became higher with the increase in temperature and the amount of lipase. When the results were compared with those obtained in the earlier study where Novozym was applied as an immobilized lipase, the reactivity was higher for Novozym, on the other hand, selectivity to 1,3-DG was much higher for Lipozyme. Especially, it is remarkable that 1,3-DG content in total DG reached to 98% in the reaction carried out at 50 ℃ using Lipozyme.
- Kumar TN, Sastry YSR, Laksh G, J. Am. Oil Chem. Soc., 66, 153 (1989)
- Jo KH, Kim TY, Kim SU, Jeong NH, Nam KD, J. Korean Ind. Eng. Chem., 5(1), 99 (1994)
- Plou FJ, Barandiaran M, Calvo MV, Ballesteros A, Pastor E, Enzyme Microb. Technol., 18(1), 66 (1996)
- Meng XH, Zou DY, Shi ZP, Duan ZY, Mao ZG, Lipids, 39, 37 (2004)
- Taguchi H, Watanabe H, Onizawa K, Nagao T, Goto N, Yasukawa T, J. Am. Coll. Nutr., 19, 796 (2000)
- Maki KC, Davidson MH, Tsushima R, Matsuo N, Tokimitsu I, Umporowicz DM, Am. J. Clin. Nutr., 76, 1230 (2002)
- Meng XH, Zou DY, Shi ZP, Duan ZY, Mao ZG, Lipids, 39, 37 (2004)
- Noma A, Borgstrom B, Biochim. Biophys. Acta. Enzymol., 227, 106 (1971)
- Nagao T, Watanabe H, Goto N, Onizawa K, Taguchi H, Matsuo N, Yasukawa T, Tsushima R, Shimasaki H, Itakura H, J. Nutr., 130, 792 (2000)
- Berger M, Laumen K, Schbeider MP, J. Am. Oil Chem. Soc., 69, 955 (1992)
- Isono Y, Nabetani H, Nakajima M, J. Ferment. Bioeng., 80(2), 170 (1995)
- Mohamed M, Uwe T, Rolf D, J. Am. Oil Chem. Soc., 75, 703 (1998)
- Rosu R, Yasui M, Iwasaki Y, Yamane T, J. Am. Oil Chem. Soc., 76, 839 (1999)
- Chung DW, Song JH, Paik MJ, J. Korean Ind. Eng. Chem., 16(6), 731 (2005)
- Sugiura M, Shimizu M, Yamada N, Yamada Y, W.O. Patent 9,909,119 (1999)
- Chung DW, Cho MH, J. Korean Ind. Eng. Chem., 20(4), 443 (2009)
- Ko SN, Kim H, Lee KT, Ha TY, Chung SH, Lee SM, Kim IH, Food Sci. Biotechnol., 12, 253 (2003)
- Marcato B, Cecchin G, J. Chromatogr. A, 730, 83 (1996)
- Guo Z, Sun Y, Food Chem., 100, 1076 (2007)
- Dias SF, Correia AC, Baptista FO, da Fonseca MMR, J. Mol. Catal. B: Enzym., 11, 699 (2001)
- Criado M, Otero C, Eur. J. Lipid Sci. Tech., 112, 246 (2010)
- Hernandez-Martin E, Otero C, Bioresour. Technol., 99(2), 277 (2008)