화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.27, No.5, 1570-1575, September, 2010
Absorption of carbon dioxide in aqueous colloidal silica solution with NaOH
E-mail:
The absorption rate (R(A)) of carbon dioxide was measured into an aqueous nanometer-sized colloidal silica solution of 0-31 wt% and NaOH of 0-2 kmol/m3 in a flat-stirred vessel for various sizes and speeds of 25 ℃ and 101.3 N/m2 to obtain the volumetric liquid-side mass transfer coefficient (k(L)a(L)) of CO2. The film theory accompanied by chemical reaction between CO2 and NaOH was used to estimate the theoretical value of absorption rate of CO2. The empirical correlation formula containing the relationship between kLaL and rheological property of the aqueous colloidal silica solution was presented. The value of R(A) in the aqueous colloidal silica solution was decreased by the reduction of k(L)a(L) due to elasticity of the solution.
  1. Astarita G, Savage DW, Bisio A, Gas treatment with chemical solvents., John Wiley & Sons, New York (1983)
  2. Fan JM, Cui Z, Ind. Eng. Chem. Res., 44(17), 7010 (2005)
  3. Yu JI, Ju HY, Kim KH, Park DW, Korean J. Chem. Eng., 27(2), 446 (2010)
  4. Hozawa M, Inoue M, Sato J, Tsukada T, J. Chem. Eng. Jpn., 24, 209 (1991)
  5. Keblinski P, Phillpot SR, Choi SUS, Eastman JA, Int. J. Heat Mass Transf., 45(4), 855 (2002)
  6. Kim JK, Jung JY, Kang YT, Int. J. Refrigeration., 29, 22 (2006)
  7. Kars RL, Best RJ, Chem. Eng. Sci., 17, 201 (1979)
  8. Hikita H, Ishimi K, Ueda K, Koroyasu S, Ind. Eng. Chem. Process Des. Dev., 24, 261 (1985)
  9. Zhou M, Cai WF, Xu CJ, Korean J. Chem. Eng., 20(2), 347 (2003)
  10. Mehra A, Chem. Eng. Sci., 51, 461 (1995)
  11. Astarita G, Greco Jr.GL, Nicodemo LA, AIChE J., 15, 564 (1969)
  12. Nakanoh M, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 19, 190 (1980)
  13. Yagi H, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 14, 488 (1975)
  14. Ranade VR, Ulbrecht JJ, AIChE J., 24, 796 (1978)
  15. Park SW, Sohn IJ, Park DW, Oh KJ, Sep. Sci. Technol., 38(6), 1361 (2003)
  16. Park SW, Choi BS, Lee BD, Park DW, Kim SS, J. Ind. Eng. Chem., 10(6), 1033 (2004)
  17. Park SW, Choi BS, Kim SS, Lee JW, Korean J. Chem. Eng., 21(6), 1205 (2004)
  18. Park SW, Choi BS, Lee JW, Sep. Sci. Technol., 40(16), 3261 (2005)
  19. Park SW, Lee JW, Choi BS, Lee JW, Sep. Sci. Technol., 41(8), 1661 (2006)
  20. Park SW, Choi BS, Song KW, Oh KJ, Lee JW, Sep. Sci. Technol., 42(16), 3537 (2007)
  21. Park SW, Choi BS, Lee JW, Sep. Sci. Technol., 41(14), 3265 (2006)
  22. Park SW, Choi BS, Lee JW, Korea-Aust. Rheol. J., 18(3), 133 (2006)
  23. Park SW, Choi BS, Kim SS, Lee JW, J. Ind. Eng. Chem., 13(1), 133 (2007)
  24. Park SW, Choi BS, Kim SS, Lee BD, Lee JW, J. Ind. Eng. Chem., 14(2), 166 (2008)
  25. Park SW, Choi BS, Oh KJ, Lee JW, J. Chem. Eng. Jpn., 41(7), 540 (2008)
  26. Park SW, Choi BS, Kim SS, Lee JW, Korean J. Chem. Eng., 25(4), 819 (2008)
  27. Hikita H, Asai S,Takatsuka T, Chem. Eng. J., 11, 131 (1976)
  28. Kennard ML, Meisen A, J. Chem. Eng. Data., 29, 309 (1984)
  29. Nijsing RATO, Hendriksz RH, Kramers H, Chem. Eng.Sci., 10, 88 (1959)
  30. Danckwerts PV, Sharma MM, Chem. Eng., 44, 244 (1966)
  31. Cussler EL, Diffusion., Cambridge University Press, New York (1984)
  32. Metzner AB, Otter RE, AIChE J., 3, 3 (1957)
  33. Seyer FA, Metzner AB, AIChE J., 15, 426 (1969)