화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.34, No.5, 1588-1595, 1995
Catalytic-Oxidation of Ethanol and Acetaldehyde in Supercritical Carbon-Dioxide
Catalytic oxidation of ethanol and acetaldehyde over a 4.45% Pt/TiO2 catalyst in supercritical carbon dioxide was studied in a 1/2 in. fixed bed reactor. Experiments for ethanol oxidation were performed at temperatures from 423 to 573 K and at a pressure of 8.96 MPa with a 5:1 molar ratio of oxygen to ethanol in the feed. Acetaldehyde oxidation was performed at temperatures from 423 to 548 K and at 8.96 MPa with an approximate 4.7:1 molar ratio of oxygen to acetaldehyde in the feed. In addition to CO2, the complete oxidation product, acetaldehyde and trace amounts of CO were generated during ethanol oxidation, while a trace amount of CO was the only partial oxidation product during acetaldehyde oxidation. A parallel and consecutive reaction mechanism was postulated for ethanol oxidation, whereas dissociative adsorption of acetaldehyde on the catalyst surface and surface reaction rate control were postulated for acetaldehyde oxidation. The kinetic parameters in the rate expressions based on the mechanisms were obtained by fitting the experimental data with the results of the model calculation. The models were used to predict the conversion and yield for ethanol oxidation and acetaldehyde oxidation.