화학공학소재연구정보센터
Polymer, Vol.51, No.10, 2229-2235, 2010
Molecular structure modulated properties of azobenzene-substituted polydiacetylene LB films: Chirality formation and thermal stability
Langmuir-Blodgett (LB) films of three novel azobenzene-substituted diacetylene monomers (DA1, DA2 and DA3) were fabricated and their optical and chiroptical properties were investigated in detail by ultraviolet visible (UV vis) spectra and circular dichroism (CD) spectra. Achiral DA1 molecules could form chiral LB films through overcrowded packing of the azobenzene moiety, while achiral DA2 and DA3 molecules not. When exposed to left-or right-handed circular polarized UV light (CPUL), striking left- or right-handed (opposite) CD signals for azobenzene chromophores and polydiacetylene chains were observed for the polymerized DA1 (PDA1) and DA2 (PDA2) LB films. However, DA3 LB films could hardly be polymerized in this case, and only striking opposite CD signals for azobenzene chromophores could be observed. It was demonstrated that the intermolecular steric hindrance and irregular arrangement of azobenzene chromophores were not favorable for the topo-polymerization and chirality formation of polydiacetylenes backbone. Further, the effects of thermal treatment on the supramolecular chirality of above three LB films were studied. Strong collective noncovalent interactions (pi-pi stacking) were believed to be responsible for the thermal stability of chiral supramolecular assemblies. (C) 2010 Elsevier Ltd. All rights reserved.