Polymer, Vol.50, No.1, 189-200, 2009
Electrospinning of chitosan-poly(ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions
Nanofibers were fabricated by electrospinning a mixture of cationic chitosan and neutral poly(ethylene oxide) (PEO) at a ratio of 3:1 in aqueous acetic acid. Chitosan ((1 -> 4)-2-amino-2-deoxy-beta-D-glucan) is a multifunctional biodegradable polycationic biopolymer that has uses in a variety of different industrial applications. Processing conditions were adjusted to a flow rate of 0.02 ml/min, an applied voltage of 20 kV, a capillary tip-to-target distance of 10 cm and a temperature of 25 degrees C. To further broaden the processing window under which nanofibers are produced, surfactants of different charge were added at concentrations well above their critical micellar concentrations (cmc). The influence of viscosity, conductivity and surface tension on the morphology and physicochemical properties of nanofibers containing surfactants was investigated. Pure chitosan did not form fibers and was instead deposited as beads. Addition of PEO and surfactants induced spinnability and/or yielded larger fibers with diameters ranging from 40 nm to 240 nm. The presence of surfactants resulted in the formation of needle-like, smooth or beaded fibers. Compositional analysis suggested that nanofibers; consisted of all solution constituents. Our findings suggest that composite solutions of biopolymers, synthetic polymers, and micellar solutions of surfactants can be successfully electrospun. This may be of significant commercial importance since micelles could serve as carriers of lypophilic components such as pharmaceuticals, nutraceuticals, antimicrobials, flavors or fragrances thereby further enhancing the functionality of nanofibers. (C) 2008 Elsevier Ltd. All rights reserved.