Polymer, Vol.49, No.23, 5037-5044, 2008
Hydrophilic-hydrophobic multiblock copolymers based on poly(arylene ether sulfone)s as novel proton exchange membranes - Part B
There has been growing evidence, both experimental and theoretical, that block copolymer systems with well-defined sulfonated regions may provide enhanced proton transport, especially at low relative humidity. We have recently demonstrated a novel way to make hydrocarbon hydrophobic-hydrophilic block copolymers. While the chemical structure and chemical compositions are very similar to random copolymers, the microstructure and the morphology are very different. The self-diffusion coefficients of water, as measured by Pulse Gradient Stimulated Echo (PGSE) NMR techniques, have indicated a significant improvement in water transport after reaching a particular block length. At that block length (10kg/mol:10kg/mol), the multiblocks display better proton conductivity under partially hydrated conditions than the random copolymers. The presence of increased free water content in the multiblocks with increasing block lengths was confirmed by states of water analysis. A significant change in the distribution of three types of water was also observed compared to the random copolymers. This paper will discuss the structure-property relationships of these multiblock copolymers for potential application as proton exchange membranes. (C) 2008 Elsevier Ltd. All rights reserved.