화학공학소재연구정보센터
Langmuir, Vol.25, No.24, 13959-13971, 2009
Long-Chain Alkylthiol Assemblies Containing Buried In-Plane Stabilizing Architectures
A series of alkylthiol compounds were synthesized to study the formation and structure of complex self-assembled monolayers (SAMs) consisting of interchanging structural modules stabilized by intermolecular hydrogen bonds. The chemical structure of the synthesized compounds, HS(CH2)(15)CONH(CH2CH2O)(6)CH2CONH-X, where X refers to the extended chains of either -(CH2)(n)CH3 or -(CD2)(n)CD3, with n = 0, 1, 7, 8, 15, was confirmed by NMR and elemental analysis. The formation of highly ordered, methyl-terminated SAMs oil gold from diluted ethanolic solutions of these compounds was revealed using contact angle goniometry, mill ellipsometry, cyclic voltammetry, and infrared reflection absorption spectroscopy. The experimental work was complemented with extensive DFT modeling of infrared spectra and molecular orientation. New assignments were introduced for both nondeuterated and deuterated Compounds. The latter set of compounds also served as a convenient tool to resolve the packing, conformation, and orientation of the buried and extended modules within the SAM. Thus, it was shown that the lower alkyl portion together with the hexa(ethylene glycol) portion is stabilized by the two layers of lateral hydrogen bonding networks between the amide groups, and they provide it Structurally robust support for the extended alkyls, The presented system can be considered to be an extension of the well-known alkyl SAM platform, enabling precise engineering of nanoscopic architectures oil the length scale from a Few to similar to 60 angstrom for applications such as cell membrane mimetics, molecular nanolithography, and so forth.