Langmuir, Vol.25, No.17, 9824-9830, 2009
Adhesion of Two Physically Contacting Planar Substrates Coated with Layer-by-Layer Assembled Films
Adhesives composed of synthetic and low-cost molecules that are based on simple chemical principles are attractive because of their versatility. In this article, we report adhesion between two planar substrates coated with layer-by-layer (LbL) assembled films of cationic poly(diallyldimethylammonium chloride) (PDDA) and anionic poly(sodium styrenesulfonate) (PSS) and perform lap shear measurements of the adhered substrates. Films prepared on the substrates functioned as adhesives when one substrate coated with the PDDA-surface film contacted the other surface coated with the PSS-surface film under adequate pressure in the presence of water droplets, suggesting that two films adhered oil the basis of polyion complex formation. Observations suggested that the adhesives failed at the substrate-film interface rather than at the bulk films. The adhesion was compared between film-coated substrates and noncoated ones. Confocal laser scanning microscopic observation of adhesives composed of fluorescently labeled poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) revealed that the labeled PAH assembled on one substrate was well dispersed, even in a nonlabeled film assembled on another substrate. It was therefore confirmed that after adhesion in the presence of the water component, the polyelectrolytes became intermixed between the glassy films, resulting in changes in the adhesive structure at the substrate-film interface.