Langmuir, Vol.25, No.13, 7193-7195, 2009
Asymmetric Colloidal Dimers under Quasi-Two-Dimensional Confinement
The synthesis and assembly of mildly fused asymmetric polystyrene/silica dimers confined to gap heights intermediate to an in-plane monolayer and an out-of-plane monolayer are explored. Using real-space confocal microscopy, we show that structures evolve from an oblique two-dimensional (2D) phase to a quasi-2D rotator, and finally to an upright hexagonally close-packed monolayer. The existence of the novel quasi-2D state, where out-of-plane motion is allowed, highlights the critical role that confinement dimensionality plays on the nature of ordering in complex colloidal systems.