Langmuir, Vol.24, No.20, 11784-11789, 2008
Surface Plasmon Resonance Spectroscopy-Based High-Throughput Screening of Ligands for Use in Affinity and Displacement Chromatography
We describe an approach that uses surface plasmon resonance (SPR) spectroscopy and self-assembled monolayers (SAMs) for the high-throughput screening of ligands for use in displacement and affinity chromatographic processes. We identified a set of commercially available organic amines and allowed them to react with SAMs presenting interchain carboxylic anhydride groups; the resulting surfaces presented ligands of interest in a background of carboxylic acid groups. We used SPR spectroscopy to determine the extent of adsorption of two model proteins-lysozyme and cytochrome c-onto these "multimodal" surfaces and to select promising "affinity" ligands for further characterization. The attachment of selected ligands to UltraLink Biosupport resulted in beads with a significantly greater affinity for lysozyme than for cytochrome c that would be suitable for use in affinity chromatographic processes. Furthermore, we also used the screens to design "affinity displacers'-small molecules that selectively retain lysozyme on chromatographic resins, while displacing cytochrome c. The combination of SPR spectroscopy and SAMs represents a powerful technique for identifying novel ligands that enable the purification of complex protein mixtures.