화학공학소재연구정보센터
Langmuir, Vol.24, No.19, 10680-10687, 2008
Modulation of drug transport properties by multicomponent diffusion in surfactant aqueous solutions
Diffusion coefficients of drug compounds are crucial parameters used for modeling transport processes. Interestingly, diffusion of a solute can be generated not only by its own concentration gradient but also by concentration gradients of other solutes. This phenomenon is known as multicomponent diffusion. A multicomponent diffusion study on drug-surfactant-water ternary mixtures is reported here. Specifically, high-precision Rayleigh interferometry was used to determine multicomponent diffusion coefficients for the hydrocortisone-tyloxapol-water system at 25 degrees C. For comparison, diffusion measurements by dynamic light scattering were also performed. In addition, drug solubility was measured as a function of tyloxapol concentration, and drug-surfactant thermodynamic interactions using the two-phase partitioning model were characterized. The diffusion results are in agreement with a proposed coupled multicomponent diffusion model for ternary mixtures relevant to nonionic drug and surfactant molecules. Theoretical examination of diffusion-based drug transport in the presence of concentration gradients of micelles shows that drug fluxes and drug concentration profiles are significantly affected by coupled multicomponent diffusion. This work provides guidance for the development of accurate models of diffusion-based controlled release in multicomponent systems and for the applications of micelle concentration gradients to the modulation of diffusion-based drug transport.