화학공학소재연구정보센터
Langmuir, Vol.24, No.19, 10674-10679, 2008
Length control in rigid cylindrical nanoassembly by tuning molecular interactions in aqueous solutions
We have studied aqueous micellar solutions of nonionic surfactant (pentaethylene glycol mono-n-dodecyl ether, C12E5) doped by cationic surfactant (dodecyl trimethylamoniumbromide, DTAB) as a function of doping level, using small angle neutron scattering. At a doping level of at least 6 mol %, rigid cylindrical micelles formed and the local cylindrical structure of the doped micelles showed no variation across the range of doping levels covered in this study (0 similar to 10 mol %). However. the total micellar length decreased rapidly as doping level increased, following well the prediction of micellar aggregation number based on molecular-thermodynamic theory. There was no synergistic interaction between surfactants, leading to monotonically decreasing the micellar aggregation number (shortening of the micellar length).