화학공학소재연구정보센터
Langmuir, Vol.24, No.16, 9154-9161, 2008
Internal modification of poly(dimethylsiloxane) microchannels with a borosilicate glass coating
We report on an original technique for the in situ coating of poly(dimethylsiloxane) (PDMS) microchannels with borosilicate glass, starting from an active nonaqueous and alkali-free precursor solution. By chemical reaction of this active solution inside the microchannel and subsequent thermal annealing, a protective and chemically inert glass borosilicate coating is bonded to the PDMS. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and nuclear magnetic resonance spectroscopy of the active solution show that it is composed of a silicon oxide network with boron connectivity. Thermal gravimetric analysis demonstrates the absence of organic content when curing is done above 150 degrees C. The borosilicate nature of the glass coating covalently bonded to the PDMS is demonstrated using ATR-FTIR spectroscopy and X-ray photoelectron spectroscopy. Atomic force microscopy and scanning electron microscopy show a smooth and crack-free coating. The latter is used as an efficient protective barrier against diffusion in PDMS of fluorescent rhodamine B dye that is dissolved either in water or in toluene. Moreover, the coating prevents swelling and consequent structural damage of the PDMS when the latter is exposed to harsh chemicals such as toluene.