Langmuir, Vol.24, No.16, 8421-8426, 2008
Electrically driven alignment and crystallization of unique anisotropic polymer particles
Micrometer-sized monodisperse anisotropic polymer particles, with disk, rod, fenestrated hexagon (hexnut), and boomerang shapes, were synthesized using the particle replication in nonwetting templates (PRINT) process, and investigations were conducted on aqueous suspensions of these particles when subjected to alternating electric fields. A coplanar electrode configuration, with 1 to 2 mm electrode gaps (20-50 V ac, 0.5-5.0 kHz) was used, and the experiments were monitored with fluorescence microscopy. For all particle suspensions, the field brought about significant changes in the packing and orientation. Extensive particle chaining and packing were observed for the disk, rod, and hexnut suspensions. Because of the size and geometry of the boomerang particles, limited chaining was observed; however, the field triggered a change from random to a more ordered packing arrangement.