Langmuir, Vol.24, No.14, 7200-7207, 2008
Interfacial assembly of an achiral zinc phthalocyanine at the air/water interface: A surface pressure dependent aggregation and supramolecular chirality
The aggregation and supramolecular chirality of the interfacial assemblies of an achiral phthalcyanine derivative, zinc 2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,3 1H-phthaloxyanine (ZnPc), were investigated, and a surface pressure dependent behavior was observed. It was found that ZnPc could be spread as a Langmuir film on water surface and transferred onto solid substrates by the horizontal lifting method. The compound formed mixed J- and H-aggregates in the transferred Langmuir-Blodgett (LB) films. Deconvolution of the broaden Q-band revealed three main components of the spectra, which corresponded to H- and J-aggregates and medium transition aggregates, whose relative contents could be modulated by the surface pressure at which the films were transferred. On the other hand, the transferred LB films composed of these aggregates showed Cotton effects in circular dichroism spectra when the floating film was compressed over a certain surface pressure although the compound itself was achiral. The cooperative arrangement of the macrocylic ring in a helical manner through the interfacial organization was suggested to be responsible for such optical activity in the LB films. A possible explanation based on the cooperative arrangement of the ZnPc building blocks in a helical sense stacking in the aggregates was proposed.