화학공학소재연구정보센터
Journal of Vacuum Science & Technology B, Vol.27, No.3, 1295-1298, 2009
Development of microfluidic device and system for breast cancer cell fluorescence detection
A biomicrofluidic device and a compact cellular testing system were developed to be used in cancer diagnostics. The device was fabricated by lithography-based microfabrication techniques, followed by two-step etching of deep reactive ion etching, and channels were formed by anodic bonding of Si and Pyrex. The device is based on the capture of cells inside a new meandering weir-type filter design, followed by detection and characterization using specific fluorescent labeling. Breast cancer cells MCF-7 and control cells MCF-10A were flowed through the microfluidic channels, and captured by meandering weir-type filters. 17 beta-Estradiaol(E-2)-BSA (bovine serum albumin)-FITC (fluorescein isothiocyanate) macromolecular complex was found to selectively label MCF-7, potentially serving as a cancer cell detection marker. MCF-7 cells were detected with specific and strong FITC signals after only 4 min of contact with the stain. The signals were about seven times stronger than that of a labeling performed on conventional glass slides. These results strongly suggest that this novel design has a potential application to detect cancer cells or other diseased cells without compromising the advantage of high sensitivity of the microfluidic approach.