Macromolecules, Vol.42, No.12, 4141-4147, 2009
Salt-Induced Charge Screening and Significant Conductivity Enhancement of Conducting Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)
This article reports a novel method to significantly enhance the conductivity of conducting poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films through a treatment with aqueous solutions of various salts, such as copper(II) chloride. Conductivity enhancement by a factor of about 700 was observed. Many salts were investigated, and the conductivity enhancement depended on the softness parameter of cations and the concentration of the salts in solution. A salt like copper(II) chloride or indium chloride, whose cation has positive softness parameter, could enhance the conductivity of the PEDOT:PSS film by 2 orders in magnitude, while other salt like sodium chloride or magnesium chloride, whose cation has negative softness parameter, gave rise to negligible effect on the conductivity. The mechanism for the conductivity enhancement was studied by various characterizations. It is attributed to PSS loss from the PEDOT:PSS film, and conformational change of PEDOT chains resulted from the salt-induced charge screening between PEDOT and PSS.