화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.2, 178-182, April, 2010
Pt/TiO2 촉매의 담체 물성과 NOx, Soot 동시 반응특성과의 상관관계 연구
Correlation Research between Simultaneous Removal Reaction for NOx, Soot and Physico-chemical Properties of Pt/TiO2’s Supports
E-mail:
초록
다양한 TiO2를 담체로 한 Pt계 촉매에서 NOx, soot의 동시 제거 반응에 대한 연구를 수행하였다. 실험은 각 촉매를 NOx와 soot의 반응을 독립 또는 동시에 반응시킨 조건으로 수행하였으며 그 결과 TiO2의 종류에 따라 서로 상이한 NOx 제거능력과 soot 산화력을 나타내었다. 또 NOx 독립 실험 시 생성된 NO2 양과 soot 산화시작온도가 저온으로 이동하는 정도가 관계가 있었다. 담체의 물성 중 Pt의 뭉침현상에 결정적 역할을 미치는 비표면적과 촉매의 환원력에 영향을 미치는 crystallite size가 NO의 NO2 전환반응에 밀접한 관계를 가지는 것으로 조사되었다. 따라서 반응의 중요한 인자는 촉매에 사용되는 담체의 물리화학적 특성임을 알 수 있었다.
Simultaneous removal reaction for NOx, soot over Pt catalysts using various TiO2 as support was studied. The catalytic tests ware carried out injectin NO, soot, NO and soot simultaneously on each catalysts. As results, it showed different NOx removal efficiency and soot oxidation rate according to various kinds of TiO2. Onset temperature of soot oxidation has a correlation to NO2 generated for the independently performed NOx. It was investigated that NO to NO2 oxidation was intimately related to crystallite size and surface area, and it has a tremendous impact on Pt aggregation on the catalyst surface and catalyst’s reducibility. Therefore, we concluded that major index of the reaction was physico-chemical properties of catalyst’s supports.
  1. Yang JS, Hong SS, Oh KJ, Cho KM, Ryu BG, Park DW, Appl. Chem., 1(2), 648 (1997)
  2. Farrauto RJ, Voss KE, Heck RJ, SAE 932720.
  3. Beckmann R, Engeler W, Mueller E, SAE 922330.
  4. Yang JS, Hong SS, Oh KJ, Cho KM, Ryu BG, Park DW, Appl. Chem., 1, 429 (1998)
  5. Oi-Uchisawa J, Wang SD, Nanba T, Ohi A, Obuchi A, Appl. Catal. B: Environ., 44(3), 207 (2003)
  6. van Setten BAAL, Bremmer J, Jelles SJ, Makkee M, Moulijn JA, Catal. Today, 53(4), 613 (1999)
  7. Biamino S, Fino P, Fino D, Russo N, Badini C, Appl. Catal. B: Environ., 61(3-4), 297 (2005)
  8. Bueno - Lopez A, Krishna K, Makkee M, Moulijn J, Catal. Lett., 99(3-4), 203 (2005)
  9. Bueno-Lopez A, Krishna K, Makkee M, Moulijn JA, J. Catal., 230(1), 237 (2005)
  10. Peng X, Lin H, Shangguan W, Huang Z, Catal. Commun., 8, 157 (2007)
  11. Setiabudi A, van Setten BAAL, Makkee M, Moulijn JA, Appl. Catal. B: Environ., 35(3), 159 (2002)
  12. Kim SS, Park KH, Bae SH, Hong SC, J. Korean Ind. Eng. Chem., 20(4), 437 (2009)
  13. Teraoka Y, Nakano K, Kagawa S, Shangguan WF, Appl. Catal. B: Environ., 5(3), 181 (1995)
  14. Peng TY, Zhao D, Dai K, Shi W, Hirao K, J. Phys. Chem. B, 109(11), 4947 (2005)
  15. Fritz A, Pitchon V, Appl. Catal. B: Environ., 13(1), 1 (1997)
  16. Burch R, Millington PJ, Catal. Today, 26(2), 185 (1995)
  17. Iwamoto S, Takahashi R, Inoue M, Appl. Catal. B: Environ., 70(1-4), 146 (2007)
  18. Kim JG, Kim YC, Park NC, Shin JS, Kim JS, Journal of the research institute for catalysis, 18, 55 (1996)
  19. Zhan SH, Chen DR, Jiao XL, Tao CH, J. Phys. Chem. B, 110(23), 11199 (2006)
  20. Yu JG, Yu HG, Cheng B, Zhao XJ, Yu JC, Ho WK, J. Phys. Chem. B, 107(50), 13871 (2003)
  21. Kim DS, Han SJ, Kwak SY, J. Colloid Interface Sci., 316(1), 85 (2007)
  22. Panagiotopoulou P, Christodoulakis A, Kondarides DI, Boghosian S, J. Catal., 240(2), 114 (2006)
  23. Kobayashi M, Miyoshi K, Appl. Catal. B: Environ., 72(3-4), 253 (2007)
  24. Bae JH, Lee CK, Sohn JR, Appl. Chem., 2(2), 969 (1998)