Journal of the American Chemical Society, Vol.131, No.40, 14130-14130, 2009
Texture of Lipid Bilayer Domains
We investigate the texture of get (g) domains in binary lipid membranes composed of the phospholipids DPPC and DOPC. Lateral organization of lipid bilayer membranes is a topic of fundamental and biological importance. Whereas questions related to size and composition of fluid membrane domain are welt studied, the possibility of texture in get domains has so far not been examined. When using polarized tight for two-photon excitation of the fluorescent Lipid probe Laurdan, the emission intensity is highly sensitive to the angle between the polarization and the tilt orientation of lipid acyl chains. By imaging the intensity variations as a function of the polarization angle, we map the lateral variations of the lipid tilt within domains. Results reveal that get domains are composed of subdomains with different lipid tilt directions. We have applied a Fourier decomposition method as a convenient way to analyze the angular intensity variations. Texture patterns of the same type have been associated with the presence of hexatic order in monolayers. The present results provide some support for the notion that hexatic order may persist in bilayers. Laurdan exhibits an emission spectral shift which correlates with the phase state of the membrane. This is quantified by the generalized polarization (GP) function, and we demonstrate that a GP analysis can be performed on supported membranes. The results show that although the get domains have heterogeneous texture, the membrane phase state does not show spatial variation within each domain.