Journal of the American Chemical Society, Vol.131, No.26, 9347-9353, 2009
Escherichia coli Allows Efficient Modular Incorporation of Newly Isolated Quinomycin Biosynthetic Enzyme into Echinomycin Biosynthetic Pathway for Rational Design and Synthesis of Potent Antibiotic Unnatural Natural Product
Natural products display impressive activities against a wide range of targets, including viruses, microbes, and tumors. However, their clinical use is hampered frequently by their scarcity and undesirable toxicity. Not only can engineering Escherichia coli for plasmid-based pharmacophore biosynthesis offer alternative means of simple and easily scalable production of valuable yet hard-to-obtain compounds, but also carries a potential for providing a straightforward and efficient means of preparing natural product analogs. The quinomycin family of nonribosomal peptides, including echinomycin, triostin A, and SW-163s, are important secondary metabolites imparting antibiotic antitumor activity via DNA bisintercalation. Previously we have shown the production of echinomycin and triostin A in E coli using our convenient and modular plasmid system to introduce these heterologous biosynthetic pathways into E coli. However, we have yet to develop a novel biosynthetic pathway capable of producing bioactive unnatural natural products in E coli. Here we report an identification of a new gene cluster responsible for the biosynthesis of SW-163s that involves previously unknown biosynthesis of (+)-(1S, 2S)-norcoronamic acid and generation of aliphatic side chains of various sizes via iterative methylation of an unactivated carbon center. Substituting an echinomycin biosynthetic gene with a gene from the newly identified SW-163 biosynthetic gene cluster, we were able to rationally re-engineer the plasmid-based echinomycin biosynthetic pathway for the production of a novel bioactive compound in E coli.