Journal of the American Chemical Society, Vol.131, No.25, 8750-8750, 2009
Thermal Decay of Rhodopsin: Role of Hydrogen Bonds in Thermal Isomerization of 11-cis Retinal in the Binding Site and Hydrolysis of Protonated Schiff Base
Although thermal stability of the G protein-coupted receptor rhodopsin is directly related to its extremely tow dark noise level and has recently generated considerable interest, the chemistry behind the thermal decay process of rhodopsin has remained unclear. Using UV-vis spectroscopy and HPLC analysis, we have demonstrated that the thermal decay of rhodopsin involves both hydrolysis of the protonated Schiff base and thermal isomerization of 11-cis to all-trans retinal. Examining the unfolding of rhodopsin by circular dichroism spectroscopy and measuring the rate of thermal isomerization of 11-cis retinal in solution, we conclude that the observed thermal isomerization of 11-cis to all-trans retinal happens when 11-cis retinal is in the binding pocket of rhodopsin. Furthermore, we demonstrate that solvent deuterium isotope effects are involved in the thermal decay process by decreasing the rates of thermal isomerization and hydrolysis, suggesting that the rate-determining step of these processes involves breaking hydrogen bonds. These results provide insight into understanding the critical role of an extensive hydrogen-bonding network on stabilizing the inactive state of rhodopsin and contribute to our current understanding of the low dark noise level of rhodopsin, which enables this specialized protein to function as an extremely sensitive biological light detector. Because similar hydrogen-bonding networks have also been suggested by structural analysis of two other GPCRs, beta 1 and beta 2 adrenergic receptors, our results could reveal a general role of hydrogen bonds in facilitating GPCR function.