화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.130, No.39, 12944-12952, 2008
Electrochemical pinning of the Fermi level: Mediation of photoluminescence from gallium nitride and zinc oxide
Charge transfer between diamond and an electrochemical redox couple in an adsorbed water film has recently been shown to pin the Fermi level in hydrogen-terminated diamond. Here we show that this effect is a more general phenomenon and influences the properties of other semiconductors when the band lineup between the ambient and electronic states in the semiconductor is appropriate. We find that the luminescent intensities from GaN and ZnO change in different, but predictable, ways when exposed to HCl and NH3 vapors in humid air. The effect is reversible and has been observed on single crystals, nanowires, flakes, and powders. These observations are explained by electron exchange between the oxygen electrochemical redox couple in an adsorbed water film and electronic states in the semiconductor. This effect can take place in parallel with other processes such as defect formation, chemisorption, and surface reconstruction and may play an important, but previously unrecognized, role when electronic and optical measurements are made in air.