화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.130, No.35, 11576-11576, 2008
Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins
We report an advanced chemoenzymatic strategy for the direct fluorescence detection, proteomic analysis, and cellular imaging of O-GlcNAc-modified proteins. O-GlcNAc residues are selectively labeled with fluorescent or biotin tags using an engineered galactosyltransferase enzyme and [3 + 2] azide -alkyne cycloaddition chemistry. We demonstrate that this approach can be used for direct in-gel detection and mass spectrometric identification of O-GlcNAc proteins, identifying 146 novel glycoproteins from the mammalian brain. Furthermore, we show that the method can be exploited to quantity dynamic changes in cellular O-GlcNAc levels and to image O-GlcNAc-glycosylated proteins within cells. As such, this strategy enables studies of O-GlcNAc glycosylation that were previously inaccessible and provides a new tool for uncovering the physiological functions of O-GlcNAc.