화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.130, No.30, 9994-10001, 2008
Surface-tuned assembly of porphyrin coordination oligomers
Two self-complementary phenanthroline-strapped porphyrins bearing imidazole arms and C-12 or C-18 alkyl chains were synthesized, and their surface self-assembly was investigated by atomic force microscopy (AFM) on mica and highly ordered pyrrolitic graphite (HOPG). Upon zinc(II) complexation, stable porphyrin dimers formed, as confirmed by DOSY H-1 NMR and UV-visible spectroscopy. In solution, the dimers formed J-aggregates. AFM studies of the solutions dip-coated onto mica or drop-casted onto HOPG revealed that the morphologies of the assemblies formed were surface-tuned. On mica, fiber-like assemblies of short stacks of J-aggregates were observed. The strong influence of the mica's epitaxy on the orientation of the fibers suggested a surface-assisted assembly process. On HOPG, interactions between the alkyl chain's and the graphite surface resulted in the stabilization and trapping of monomer species followed by their subsequent association into coordination polymers on the surface. Interdigitation of the alkyl chains of separate polymer strands induced lateral association of wires to form islands that grew preferentially upon drop-casting and slow evaporation. Clusters of laterally assembled wires were observed for the more mobile functionalized porphyrins bearing C-12 chains.