화학공학소재연구정보센터
Journal of Power Sources, Vol.193, No.2, 632-638, 2009
Developing fuel map to predict the effect of fuel composition on the maximum efficiency of solid oxide fuel cells
At any given cell operating condition, a fuel map can be developed to predict the effect of a fuel containing carbon, hydrogen, oxygen and inert gas atoms on the maximum cell efficiency (MCE) of solid oxide fuel cells (SOFCs). To create a fuel map, a thermodynamic model is developed to obtain the fuels that would yield identical MCE for SOFCs. These fuels make a continuous curve in the ternary coordinate system. A fuel map is established by developing continuous fuel curves for different MCEs at the same operating condition of a cell and representing them in the carbon-hydrogen-oxygen (C-H-O) ternary diagram. The graphical representation of fuel maps can be applied to predict the effect of the fuel composition and fuel processor on the MCE of SOFCs. As a general result, among the fuels that can be directly utilized in SOFCs, at the same temperature and pressure, the one located at the intersection of the H-C axis and the carbon deposition boundary (CDB) curve in the C-H-O ternary diagram provides the highest MCE. For any fuel that can be indirectly utilized in SOFCs, the steam reforming fuel processor always yields a higher MCE than auto-thermal reforming or partial oxidation fuel processors at the same anode inlet fuel temperature. (C) 2009 Elsevier B.V. All rights reserved.