화학공학소재연구정보센터
Journal of Power Sources, Vol.184, No.2, 652-656, 2008
A study on electrical conductivity of chemosynthetic Al2O3-2SiO(2) geoploymer materials
Al2O3-2SiO(2) amorphous powders are synthesized by sol-gel method with tetraethoxysilane (TEOS) and aluminum nitrate (ANN) as the starting materials. The microstructure and phase structure of the powders are investigated by SEM and XRD analysis. Geopolymer materials samples are prepared by mechanically mixing stoichiometric amounts of calcined Al2O3-2SiO(2) powders and sodium silicate solutions to allow a mass ratio of Na2O/Al2O3 = 0.4, 0.375, 0.35, 0.325, 0.288, 0.26, 0.23 or 0.2 separately, and finally to form a homogenous slurry at a fixed H2O/Na2O mole ratio = 11.7. The results show that the synthetic Al2O3-2SiO(2) powders have polycondensed property and their compressive strengthes are similar to that of nature metakaolin geopolymer materials. The results also show that the water consumption is not the main influencing factor on electrical conductivity of harden geopolymer materials but it can intensively affect the microstructure of geopolymer materials. In addition, the electrical conductivity of harden geopolymer sample is investigated, and the results show that the geopolymer materials have a high ionic electrical conductivity of about 1.5 x 10(-6) S cm(-1) in air at room temperature. (C) 2008 Elsevier B.V. All rights reserved.