Journal of Physical Chemistry B, Vol.113, No.5, 1501-1510, 2009
Systematic Coarse-graining of a Multicomponent Lipid Bilayer
A solvent-free coarse-grained model for a 1: 1 mixed dioleoylphosphatidylcholine (DOPC) and a dioleoylphospatidylethanolamine (DOPE) bilayer is developed using the multiscale coarse-graining (MS-CG) approach. B-spline basis functions are implemented instead of the original cubic spline basis functions in the MS-CG method. The new B-spline basis functions are able to dramatically reduce memory requirements and increase computational efficiency of the MS-CG calculation. Various structural properties from the CG simulations are compared with their corresponding all-atom counterpart in order to validate the CG model. The resulting CG structural properties agree well with atomistic results, which shows that the MS-CG force field can reasonably approximate the many-body potential of mean force in the coarse-grained coordinates. Fast lipid lateral diffusion in the CG simulations, as a result of smoother free energy landscape, makes the study of phase behavior of the binary mixture possible. Small clusters of distinct lipid composition are identified by analyzing the DOPC/DOPE lipid lateral distribution, indicating a nonuniform distribution for the mixed bilayer. The results of lipid phase behavior are compared to experimental results, and connections between the experimental and simulation conclusions are discussed.