Journal of Physical Chemistry B, Vol.112, No.44, 13684-13694, 2008
Analysis of Dielectric and Conductive Dispersion above T-g in Glass-Forming Molecular Liquids
Dynamics of the nonassociated supercooled liquids N-methyl-epsilon-caprolactam (NMEC) and glycerol in the frequency domain are investigated using full complex-nonlinear-least-squares fitting of immittance spectroscopy data for appreciable temperature ranges above the glass transition. Such fitting, not previously used for these materials, helps to identify physical processes responsible for the data and elements of their common behavior. Several different fitting models were applied to find a physically plausible best-fitting one to distinguish quantitatively between the dielectric effects of dipoles and the conductive effects of mobile ions. The utility of many composite fitting models was investigated, and although a pure conductive-system dispersive (CSD) fitting model led to good but physically unrealistic fits of all data sets, the dielectric-system dispersive (DSD) Davidson-Cole model best fitted the alpha-dispersion part of the responses. Nevertheless, the series combination of such a DSD model and a separate CSD model (one not associated with electrode effects) was found to yield much better fitting of the data for both materials. Although the CSD model plays somewhat the role of the conventional parallel DSD Johari-Goldstein beta-response, it is here in series and arises from mobile impurityion effects rather than from dipolar ones. Previous analyses of data of the present and other molecular materials have often involved two DSD models in parallel, but fitting with such a composite model led here to less physically plausible parameter values and ones with appreciably more uncertainties. Surprisingly, the series DSD and CSD composite-model fits led to comparable estimated values of the NMEC and glycerol dielectric strength parameters, as well as to the nearly equal small thermal activation energies of these parameters.