Journal of Physical Chemistry B, Vol.112, No.40, 12612-12617, 2008
In-situ polymerization at the interfaces of micelles: A "grafting from" method to prepare micelles with mixed coronal chains
Herein we describe a new strategy for producing micelles with mixed coronal chains. This method involves attachment of an atom transfer radical polymerization (ATRP) initiator at the interface of a micelle and preparation of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes at the interface by a "grafting from" method. Poly(ethylene glycol)-block-polystyrene (PEG-b-PS) diblock copolymer was achieved by ATRP. After the sulfonation reaction PS blocks were partly sulfonated. In aqueous solution at low pH the sulfonated block copolymer self-assembled into micelles with PS cores and PEG coronae and sodium 4-styrenesulfonate groups were distributed at the interfaces of the micelles. An ATRP initiator consisting of a quaternary ammonium salt moiety and a 2-bromo-2-methyl propionate moiety was ion exchanged onto the interface of the micelle. ATRP of DMAEMA was initiated at the interface, and micelles with PEG/PDMAEMA mixed coronal chains were prepared by ATRP. The structures of the micelles were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and zeta potential measurements. The size and morphology of the micelles were controlled by pH in aqueous solution. At high pH, PDMAEMA brushes collapse, forming nanodomains on the surface of the micelles. PDMAEMA brushes in the coronae of the micelles could be used as a template for preparation of gold nanoparticles.