Journal of Physical Chemistry B, Vol.112, No.39, 12240-12248, 2008
Viscosity and electrophoretic mobility of cesium fullerenehexamalonate in aqueous solutions - Comparing experiments and theories on nanometer-sized spherical polyelectrolyte
The viscosity of aqueous solutions of cesium fullerenehexamalonate T-h-C-66(COOCs)(12), a rigid spherical nanometer-sized polyvalent salt, was measured by the Ubbelohde-type viscometer. The measurements were performed without added salt at 25 degrees C in the concentration range between 7 and 320 g/dm(3). The concentration dependence of the obtained reduced viscosity was compared with the theoretical prediction, taking into account contributions stemming from the intrinsic viscosity, hydrodynamic perturbations of the hypothetically bare fullerenehexamalonate macroion, the primary electroviscous effect, and the secondary electroviscous effect. Using the geometric radius of the bare macroion from the previous measurements of the estimated effective charge of the macroion and from the small-angle X-ray scattering data of the estimated thickness of the compact shell of counterions electrostatically bound to the macroion, a good agreement between theory and the experiment was obtained in the range of the lowest and of the highest concentrations. Electrostatic interactions are identified as the main cause of the increased reduced viscosity at the lowest measured concentrations. At the highest concentrations, electrostatic interactions are effectively screened, and the influence of binary hydrodynamic interactions and perturbations of the hypothetical bare macroion prevails over electrostatic contributions to the increased viscosity. The electrophoretic mobility of the fullerenehexamalonate ion in aqueous salt-free medium was computed with the same value for the radius of the fullerenehexamalonate macroion as that used in the calculation of viscosity. The numerical solution of Ohshima's equation agreed well with the experimental values.