Journal of Physical Chemistry B, Vol.112, No.30, 8855-8858, 2008
Stable aromatic dianion in water
Perylene diimide (PDI) bearing polyethylene glycol substituents at the imide positions was reduced in water with sodium dithionite to produce an aromatic dianion. The latter is stable for months in deoxygenated aqueous solutions, in contrast to all known aromatic dianions which readily react with water. Such stability is due to extensive electron delocalization and the aromatic character of the dianion, as evidenced by spectroscopic and theoretical studies. The dianion reacts with oxygen to restore the parent neutral compound, which can be reduced again in an inert atmosphere with sodium dithionite to give the dianion. Such reversible charging renders PDIs useful for controlled electron storage and release in aqueous media. Simple preparation of the dianion, reversible charging, high photoredox power, and stability in water can lead to development of new photofunctional and electron transfer systems in the aqueous phase.