화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.113, No.25, 7054-7063, 2009
Twisting the Phenyls in Aryl Diphosphenes (Ar-P=P-Ar). Significant Impact upon Lowest Energy Excited States
Aryl diphosphenes (Ar-P=P-Ar) possess features that may make them useful in photonic devices, including the possibility for photochemical E-Z isomerization. Development of good models guided by computations is hampered by poor correspondence between predicted and experimental UV/vis absorption spectra. A hypothesis that the phenyl twist angle (i.e., PPCC torsion) accounts for this discrepancy is explored, with positive findings. DFT and TDDFT (B3LYP) were applied to the phenyl-P=P-phenyl (Ph-P=P-Ph) model compound over a range of phenyl twist angles, and to the Ph-P=P-Ph cores of two crystallographically characterized diphosphenes: bis-(2,4,6-tBu(3)C(6)H(2))-diphosphene (Mes*-P=P-Mes*) and bis-(2,6-Mes(2)C(6)H(3))-diphosphene (Dmp-P=P-Dmp). A shallow PES is observed for the model diphosphene: the full range of phenyl twist angles is accessible for under 5 kcal/mol. The Kohn-Sham orbitals (KS-MOs) exhibit stabilization and mixing of the two highest energy frontier orbitals: the n(+) and pi localized primarily on the -P=P- unit. A simple, single-configuration model based upon this symmetry-breaking is shown to be consistent with the major features of the measured UV/vis spectra of several diphosphenes. Detailed evaluation of singlet excitations, transition energies and oscillator strengths with TDDFT showed that the lowest energy transition (S-1 <-S-0) does not always correspond to the LUMO <- HOMO configuration. Coupling between the phenyl rings and central -P=P- destabilizes the pi-pi* dominated state. Hence, the S, is always n(+)-pi* in nature, even with a pi-type HOMO. This coupling of the ring and -P=P- pi systems engenders complexity in the UV/vis absorption region, and may be the origin of the variety of photobehaviors observed in diphosphenes.