화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.113, No.17, 5030-5038, 2009
Rate Constants of Nine C6-C9 Alkanes with OH from 230 to 379 K: Chemical Tracers for [OH]
We report absolute rate-constant measurements for the reactions of nine C-6-C-9 alkanes with OH in 8-10 torr of nitrogen from 230 to 379 K in the Harvard University High-Pressure Flow System. Hydroxyl concentrations were measured using laser-induced fluorescence, and alkane concentrations were measured using Fourier transform infrared Spectroscopy. Ethane's reactivity was simultaneously measured as a test of experimental performance. Results were fit to a modified Arrhenius equation based on transition state theory (ignoring tunneling), k(T) = Be-Ea/T(T(1 - e(-) (1.44 nu 1/T))(2)(1 - e(-) (1.44 nu 2/T)), with nu(1) and nu(2) bending frequencies, set to 280 and 500 cm(-1). Results were as follows for B (10(-9) K cm(3) s(-1)), E-a (K), and k(298) (10(-12) cm(3) s(-1)): cyclohexane, 3.24 +/- 0.14, 332 +/- 12, 7.13; cyclo-octane, 3.47 +/- 0.30, 149 +/- 26, 14.1; 2-methylhexane, 1.45 +/-0.08, 110 +/- 15, 6.72; 3-methylhexane, 1.50 +/- 0.08, 128 +/- 16, 6.54; methylcyclopentane, 1.65 +/- 0.07, 109 +/- 13, 7.65; methylcyclohexane, 1.86 +/- 0.09, 83 +/- 14, 9.43, methylcycloheptane, 3.45 +/- 0.45, 142 +/- 36, 14.4; n-propylcyclohexane, 2.83 +/- 0.14, 112 +/- 15, 13.0; isopropylcyclohexane, 1.79 +/- 0.11, -44 +/- 34, 13.9. Uncertainties are one sigma results from linear regression fits and are likely underestimated. Room temperature rate coefficients of reaction are accurate to within 10% at two sigma. A comprehensive fit to 17 separate studies including the present work for cyclohexane gives good agreement with the present results: terms as above, 3.09 +/- 0.12, 326 +/- 12, 6.96. Five of these compounds are routinely measured in urban air within a suite of atmospheric nonmethane hydrocarbons and reach parts per billion levels. The remaining four are C8-C9 cycloalkanes with low anthropogenic emissions. Because of their high, specific reactivity with OH, their concentration decays may be used as an indirect measurement of [OH] in the atmosphere or laboratory. This data set serves to further constrain the reaction barriers for cyclohexane and cyclo-octane, is the first temperature-dependent study for methylcyclopentane and methylcyclohexane, and provides the first measurements for the rate constants of the remaining five hydrocarbons. Reactivity follows general trends observed for other saturated alkanes, increasing with size and extent of substitution. Reaction barriers are heavily influenced by the presence of tertiary hydrogens. The reaction barrier for cyclo-octane is significantly lower than that for cyclohexane, a result that is not predicted from our current understanding of hydrocarbon reactivity.