Journal of Physical Chemistry A, Vol.113, No.8, 1508-1517, 2009
Supramolecular Modification of Ion Chemistry: Modulation of Peptide Charge State and Dissociation Behavior through Complexation with Cucurbit[n]uril (n=5, 6) or alpha-Cyclodextrin
Electrospray Fourier transform ion cyclotron resonance mass spectrometry, ion mobility spectrometry, and computational methods were utilized to characterize the complexes between lysine or pentalysine with three prototypical host molecules: alpha-cyclodextrin (alpha-CD), cucurbit[5]uril (CB[5]), and cucurbit[6]uril (CB[6]). Ion mobility measurements show lysine forms externally bound, singly charged complexes with either alpha-CD or CB[5], but a doubly charged complex with the lysine side chain threaded through the host cavity of CB[6]. These structural differences result in distinct dissociation behaviors in collision-induced dissociation (CID) experiments: the alpha-CD complex dissociates via the simple loss of intact lysine, whereas the CB[5] complex dissociates to yield [CB[5] + H3O](+), and the CB[6] complex loses neutral NH3 and CO, the product ion remaining a doubly charged complex. These results are consistent with B3LYP/6-31G* binding energies (kJ mol(-1)) of D(Lys + H+-alpha-CD) = 281, D(Lys + H+-CB[5]) = 327, and D(Lys + 2H(2+)-CB[6]) = 600. B3LYP/6-31G* geometry optimizations show complexation with alpha-CD stabilizes the salt bridge form of protonated lysine, whereas complexation with CB[6] stabilizes doubly protonated lysine. Complexation of the larger polypeptide pentalysine with alpha-CD forms a nonspecific adduct: no modification of the pentalysine charge state distribution is observed, and dissociation occurs via the simple loss of alpha-CD. Complexation of pentalysine with the cucurbiturils is more specific: the observed charge state distribution shifts higher on complexation, and fragmentation patterns are significantly altered relative to uncomplexed pentalysine: C-terminal fragment ions appear that are consistent with charge stabilization by the cucurbiturils, and the cucurbiturils are retained on the fragment ions. Molecular mechanics calculations suggest CB[5] binds to two protonated sites on pentalysine without threading onto the peptide and that CB[6] binds two adjacent protonated sites via threading onto the peptide.