Journal of Physical Chemistry A, Vol.113, No.4, 713-718, 2009
Theoretical Investigation of N-Nitrosodimethylamine Formation from Dimethylamine Nitrosation Catalyzed by Carbonyl Compounds
The carbonyl-compound-catalyzed nitrosation of amines to form carcinogenic nitrosamines under nonacidic condition is different from the classic nitrosation via acidification of nitrite anion. The mechanistic pathways of N-nitrosodimethylamine (NDMA) formation by the reactions of dimethylamine (DMA) with the nitrite anion catalyzed by carbonyl compounds have been investigated using the DFT/B3LYP method at the 6-311+G(d,p) level. The computational results show that the energy barriers of the nucleophilic addition reaction, which were calculated as 27-40 kcal/mol, increase significantly with methylation but vary slightly with chloromethylation on the carbonyl group. Comparison of energy barriers of this nucleophilic addition reaction and the electrophilic substitution reaction indicates that the former is the rate-determining step, from which the order of the catalytic activity is obtained as formaldehyde > chloral > acetaldehyde > acetone. Furthermore, analysis of electronic and steric effects on catalytic activity reveals that electron-withdrawing substituents decrease the energy barrier but electron-donating substituents and steric hindrance will block this catalytic reaction. Based on this discovery, fluoral is proposed as a good catalyst for the nitrosation of DMA by nitrite anion, which has a calculated energy barrier of about 26 kcal/mol. The results obtained in this work will help elucidate the mechanisms of formation of nitrosamines.