Journal of Physical Chemistry A, Vol.112, No.44, 11178-11189, 2008
Matrix-Isolated Diglycolic Anhydride: Vibrational Spectra and Photochemical Reactivity
The structure of diglycolic anhydride (1,4-dioxane-2,6-dione; DGAn) isolated in a low-temperature argon matrix at 10 K was studied by means of FTIR spectroscopy. Interpretation of the experimental vibrational spectrum was assisted by theoretical calculations at the DFF(B3LYP)/aug-cc-pVTZ level. The optimized structure of the isolated DGAn molecule adopts an envelope conformation, which was found to resemble closely the structure of DGAn in a crystal. The UV-induced (lambda > 240 nm) photolysis of the matrix-isolated compound was also investigated. In order to identify the main species resulting from irradiation of the monomeric DGAn, a comparison between the DFT(B3LYP)/aug-cc-pVTZ calculated spectra of the putative products and the experimental data was carried out. The observed photoproducts can be explained by a model involving four channels: (a) 1,3-dioxolan-4-one + CO; (b) CO2 + CO + oxirane; (c) formaldehyde + ketene + CO2; (d) oxiran-2-one + oxiran-2-one. As a whole, the experiments indicated that the C-O-C bridge, connecting the two C=O groups, is the most reactive fragment in the molecule excited with UV light. This observation was confirmed by the natural bond orbital (NBO) analysis revealing that the most important NBO interactions are those between the carbonyl groups and the adjacent C-O and C-C bonds.